Dual Energy CT for Gout

Benjamin D. Levine, MD
Associate Professor of Radiology
Dept. of Radiological Sciences
Musculoskeletal Section
UCLA Health
Gout

• Deposition of monosodium urate crystals (MSU) in joints and soft tissues

• Body’s reaction to MSU leads to inflammation and symptoms

• Hallmark is hyperuricemia

www.pathologyoutlines.com
Gout

Diagnosis

- Clinical Findings

- Reference standard
 - ID of MSU crystals in joint fluid aspirate or soft tissue biopsy (thin, needle, negative birefringence on polarized microscopy)

www.pathologyoutlines.com
Gout
Diagnosis (Difficult/Elusive)

- Reliability of polarizing microscopy is poor
- Unusual manifestations, mimics, and disease coexistence
- Hyperuricemia may not be present in acute gout (42%)
- Joint aspiration and/or needle biopsy may not be feasible:
 - Physician experience/skill
 - Busy office setting/blind aspiration
 - Small joints, periarticular soft tissues
- Joint aspiration/biopsy complications
Gout

Ideal Imaging

✓ Accurate, non-invasive, early diagnosis
 ▪ Differentiate disease mimics
 ▪ Detect unusual manifestations
 ▪ Detect subclinical disease

✓ Evaluate severity and sequelae of disease

✓ Distinguish acute vs. chronic

✓ Quantify urate burden

✓ Monitor response to urate lowering therapy
 ✓ Outcome measures for clinical trials
Gout Imaging

- **Radiography (X-Ray)**

- **Advanced Imaging**
 - Magnetic Resonance Imaging (MRI)
 - High Resolution Ultrasound
 - Computed Tomography (CT)
 - Dual Energy CT
Gout
Radiography

- Marginal erosions with overhanging edges and sclerosis
- Preserved joint spaces until late
- Soft tissue nodules (tophi)
- Normal x-rays in early gout
 - 45-70% negative
- Latent period between first clinical symptoms and specific x-ray signs (5-10 yrs)

Gout

MRI

- Comprehensive (soft tissue, bone, joint)
- *Not specific*, variable MR features
 - Tophi intermediate to low signal
 - Variable enhancement and marrow edema
- Location is key
Gout
High-Resolution Ultrasound

Joint features:
- Joint effusion
 - US more sensitive than clinical exam
- Synovitis
- Erosions
- Hyperechoic floating MSU crystals ("snowstorm")

Gout
High-Resolution Ultrasound

Double Contour Sign

- MSU crystals on hyaline cartilage
- Specific (99%) for gout and asymptomatic hyperuricemia
- Not sensitive (44%)
- Sign can resolve with therapy

Gout
High-Resolution Ultrasound

Synovitis

- Heterogenous, hyperechoic foci, hypoechoic rim
- Increased vascularity
- Nodular, mass-like
- Synovitis in RA:
 - Hypoechoic, arborizing, fingerlike
Gout
High-Resolution Ultrasound

Erosions

- Intraarticular discontinuity of the bone surface seen in 2 perpendicular planes (Outcome Measures in Rheumatology Group)

- Caution:
 - Normal cortical variation
 - Degenerative changes
 - Post traumatic changes
Gout
High-Resolution Ultrasound

Tophi

- Hyperechoic, anechoic rim, nodular, infiltrative
- Posterior shadowing
Gout
High-Resolution Ultrasound

Tendons/Ligaments

- Most commonly envelops (45%) rather than occurs intratendinous

 ✓ Achilles Tendon
 ✓ Peroneal tendons
 ✓ Popliteus tendon
 ✓ Cruciate ligaments
 ✓ Patellar Tendon

Gout

CT

Tophi
- Discrete, hyperdense masses (160-170 HU)
- Within bone, around joints, in tendons, in soft tissues

Erosions
- Associated with tophi (82%)
Gout

Dual Energy CT

- Two x-ray sources (80 and 140 kVp)
- Simultaneously acquires two data sets
- X-ray absorption is energy dependent
- Materials act differently at different energies depending on their chemical composition
- Creates a difference in attenuation (DEI)
- Each unique DEI makes classification of chemical composition of different tissues possible
- Computer algorithm software color codes different tissues based their unique DEI, and fuses with CT image

Desai MA, et al. Radiographics 2011; 31:1365-1375
Gout
Dual Energy CT

Urate-Positive

- Green, globular, focal, and confluent
- Adjacent to an erosion
- Ligaments, tendons, cartilage, menisci
- Minimum diameter 3 mm
Gout
Dual Energy CT

• Sensitivity 78-100%
• Specificity 89-100%
• Good overall accuracy

UCLA Health
Gout
Dual Energy CT - Clinical Utility

- Establish/confirm diagnosis
- Unusual Clinical manifestations
- Distinguish gout from disease mimics
- Discordant Serum Urate
- Evaluate acute vs. chronic changes
- Detect subclinical disease
- Volumetric quantification of urate burden
DECT enables diagnosis of gout when the standard diagnostic approach fails (30%)

- False negative synovial fluid analysis
- Inability to aspirate fluid (synovitis, small joints)
- Unable to biopsy suspected tophus
 - Tendons, ligaments, entheses

Gout
Dual Energy CT - Clinical Utility

- DECT can measure MSU volume
- Changes in actual MSU volume burden following treatment
- Prediction of gout flare risk
- Correlation with cardiac risk factors
- Research implications
 - Outcome measures
 - Gout score/biomarker
 - Gout distribution

Fitzgerald J, Levine BD, Raymond J, McMahon MA. Impact of Plasma Urate and Tophaceous Burden on Inflammatory Biomarkers of Cardiovascular Disease. *Arthritis Rheumatol*. 2016; 68 (suppl 10)
Gout

Dual Energy CT - Limitations

- **Artifacts**
 - Skin (calluses) and nailbeds
 - Motion and metal
 - Edges of cortical bone, linear
 - Subcutaneous tissue
 - Muscle

- **Ionizing radiation**
- **May have more limited sensitivity in acute gout**
- **May have limited specificity in advanced knee osteoarthritis**

Gout
Dual Energy CT

Ideal Imaging Technique

✓ **Highly specific**
 - Confirms diagnosis of gout
 - Distinguishes disease mimics/unusual manifestations
 - Detects subclinical disease

✓ **Non-invasive**
 - Alternative to joint aspiration/biopsy

✓ **Early disease detection**
 - To reduce morbidity

✓ **Quantifies** urate volume burden

✓ **Monitors** response to treatment
Gout

Do We Really Have to Aspirate the Joint?
Gout
Do We Really Have to Biopsy?
Dual Energy CT for Gout

Benjamin D. Levine, MD
Associate Professor of Radiology
Dept. of Radiological Sciences
Musculoskeletal Section
UCLA Health