Fish Skin Grafts Promote Superior Cell Ingrowth Compared to Amnion Allografts, Human Cadaver Skin and Mammalian Extracellular Matrix (ECM)

Christopher L. Winters, DPM
American Health Network
Indianapolis, IN
Why do we look at cell ingrowth?

- The most obvious feature of chronic wounds is the failure to re-epithelialize.
- Failure is most often due to keratinocyte migration problems rather than failure to proliferate.
- Failure of migration may occur due to:
 - Lack of functional Extracellular Matrix for adherence
 - Excessive inflammation and protease activity
 - Altered cytokine expression and distribution
Cell Migration as marker of functional Extracellular Matrix

• Achieving cell ingrowth into a skin substitute demonstrates functional ability to
 – Protect ECM components, growth factors and receptors from degradation
 – Modulate inflammatory response
 – Provide scaffold to direct cells into the injury as well as stimulating them to proliferate, differentiate and synthesize new ECM
Study goals

1. Compare the structure of human skin to common skin substitutes from:
 – Fish skin
 – Human amnion/chorion
 – Bovine Pericardium
 – Porcine small intestinal submucosa
 – Porcine urinary bladder

2. Quantify the different rates of cellular ingrowth between two skin substitutes
 – Fish skin
 – Human amnion/chorion
Structure comparison

• Structure comparison was done by Scanning Electron Microscopy imaging
• Porosity was measured by number of pores and pore sizes.
Structural Comparison with Other Tissue Based Products

- **Human Skin**
- **Acellular Fish Skin Graft**
- **Porcine Urinary Bladder Matrix**
- **Porcine Small Intestinal Submucosa**
- **Human Amnion/Chorion Membrane allograft**
- **Bovine Pericardium**

Comparison

- **No disease transmission risk**
 - Gentle processing
 - Preserves lipids
 - Preserves structure

- **Disease transmission risk**
 - Harsh processing with detergents
 - Lipid removal
 - Structure denaturation

Human- and Fish Skin Structural Comparison

- Fundamental structure is similar

- The key difference is:
 - Scales (all removed) instead of hairs
 - Omega3
 - Fish skin: >30%
 - Human skin: <1%
 - Amniotic Membrane: <1%

Rakers S. Et al. ‘Fish matters’: the relevance of fish skin biology to investigative dermatology. Experimental Dermatology 2010; 19: 313–324.
Cell ingrowth assay

- Biologic materials were seeded with NIH 3T3 mouse embryo fibroblast cell line.
- Each material received 16,000 cells
- Plates were incubated for 12 days
- Samples examined under
 - Light microscope for Hematoxylin and Eosin staining
 - Confocal microscope for Fluorescent stains
Fibroblasts Attachment and Migration on Fish Skin
Parallel group, double-blind, non-inferiority, randomized controlled, punch graft clinical trial on 81 healthy individuals.

The comparison material was a porcine derived ECM. Every participant had two 4mm punch graft biopsy wounds made on the upper forearm and then a sheet of either fish skin or porcine ECM was placed in the wounds. Every participant came for a follow up at day 14, 21, 25 and on day 28, the end points of the study. On day 28 all wounds had essentially healed as expected.

Overall the fish skin showed significantly faster healing (p=0.041).
In Vitro and In Vivo Histology

H&E images of cell infiltration into fish skin from *vitro* experiments,

From human implants – showing cell infiltration
Ideal Pore size for early cellular population

Cellular ingrowth

Acellular fish skin
Cell Ingrowth

Fish Skin

Human Amnion/Chorion Membrane Allograft

SEM

Fluorescent Labeling

H&E Staining

Acellular Fish Skin Graft

Human Amnion/Chorion Membrane Allograft

p<0.0001
Case Study-real world use of fish skin

• 73 y/o diabetic male with a leg ulcer sustained while camping and hitting leg on the metal grate around the fire approximately 2 weeks prior to initial presentation
• Presented to primary care physician who immediately referred patient to our wound center
• Ulcer was too large and possibly too deep to attempt debridement in the wound center
• Taken to the operating room for initial debridement
Case Study - Initial presentation
Case Study
Case Study - Rapid and steady healing progress throughout the weeks

Week 1
105cm²

Week 2
72cm²

Week 4
50cm²

Week 6
36cm²

Week 10
16cm²

Week 14
5cm²
Healed-16 weeks with 6 applications of fish skin
Key difference of Fish Skin

– No viral transmission from N. Atlantic Cod to humans

– Allows for gentle processing retaining
 • Three Dimensional Structure
 • Fatty Acids – Omega3
 • Extracellular Matrix Component

– No Cultural or religious concerns

– Wild caught through responsible fisheries
Discussion on Fish Skin

– Promising skin substitute for tissue regeneration

– Has shown faster healing in RCT (n=162) compared to mammalian sourced skin substitutes

– Rich in Omega3 fatty acids that
 • Promotes cell migration
 • Natural bacterial barrier without cytotoxicity
 • Inflammation modulation
1. **Fish skin with highest resemblance to human skin**
 - Dermal origin of the Fish Skin maintains structural similarity to human skin superior to skin substitutes of other tissue origins

2. **Fish skin shows superior cell ingrowth**
 - The native bioactive structure of acellular fish skin supports superior three-dimensional ingrowth of cells compared to human amnion/chorion membrane
 - Structural preservation in biologic tissue products is important for their ability to support cellular ingrowth
 - Faster healing time compared to porcine tissue
 - Further ongoing studies are underway with other mammalian tissues and human cadaver tissue suggest more rapid cellular ingrowth leading to faster healing times
Thank you

Christopher Winters DPM