Extensor Digitorum Brevis tendon transfer

Kimberlee B. Hobizal, DPM MHA
Dane K. Wukich, MD
- Dane Wukich, MD receives royalties from Arthrex Surgical
Lesser digital deformities
 - Multiplanar
 - Crossover Toe
 - Surgical challenge
Technique Tip

- Level IV evidence
- EDB and biotenodesis screw
- Controlled tension
- Allows for stability for multi-planar correction
Instability at MPJ
 - SAGITTAL
 - TRANSVERSE
 - MULTI-PLANAR

Imbalance of extrinsic & intrinsic muscles

Disruption of ligamentous support of MPJ

Ligament dysfunction of plantar plate/collateral ligaments
 - Acute trauma
 - Chronic attenuation
 - Inflammatory arthropathy
Plantar Plate Failure

Plantar plate failure → Sagittal deformity
Collateral Ligament Insufficiency

Collateral ligament insufficiency → Transverse plane deformity
Deformity → Subluxation/Dislocation of MTPJ
Corrective procedures:
- Arthroplasty
- Arthrodesis
- Metatarsal osteotomies
- FDL transfer

Complications
- Joint stiffness
- Recurrent deformity
- Swelling
- Continued pain
- Loss of toe flexion
EDB Tendon Transfer

- Proximal tenotomy of the EDB maintaining insertion to the dorsal aspect of the proximal phalanx
- Tendon rerouted through drill holes in the base of proximal phalanx and metatarsal head/neck
- Recreates attenuated collateral ligament and reinforce the lax plantar plate
Adding the interference screw

- Utilizing the interference screw for proximal fixation of the tendon transfer
- Adds durable internal fixation with increased mobility and function
- Allows surgeon to recreate results with little technical difficulty
Materials and Methods

- Two year review of 6 surgical patients
 - 4 females
 - 2 males
 - Ages 35-62
- Painful rigid or flexible 2nd toe deformity
- Failed non-surgical treatment
 - Shoe gear modification
 - Taping
 - Splinting
 - Orthoses

- Inclusion criteria
 - Pain, digital elevatus, callus formation, crossover deformity, irritation with shoe gear

- Exclusion criteria
 - Previous surgery, compromising autoimmune disorder
Preoperative Planning

- Three Weightbearing Radiographs
 - AP
 - MO
 - Lateral
Surgical Technique

- Dorsal longitudinal incision
 - 2nd PIPJ to proximal metatarsal head
- Possible Z-lengthening of EDL
- Identify EDB and transect PROXIMALLY
 - Distal to musculotendinous junction
 - *EDB must be left intact at its distal attachment to the dorsal aspect of proximal phalanx
Surgical Technique

- 4-0 fiberwire whipstitch applied to EDB tendon
- 2nd MPJ capsulotomy
Surgical Technique

- 4-0 fiberwire whipstitch applied to EDB tendon
- 2nd MPJ capsulotomy
Surgical Technique

- Release collateral ligament/plantar plate with McGlamry elevator
 - VALGUS deformity
 - Release contracted lateral collateral ligament
 - VARUS deformity
 - Release contracted medial collateral ligament

- Tendon routing and drill orientation dictated by type of deformity
 - VALGUS deformity
 - EDB routed to reconstruct medial collateral ligament
 - VARUS deformity
 - EDB routed to reconstruct lateral collateral ligament

VALGUS = lateral deviation
VARUS = medial deviation
Surgical Technique

- No sagittal deformity
 - Drill holes oriented transversely in proximal phalanx and metatarsal head
 - Parallel to WB surface

- Sagittal deformity
 - Drill holes oriented along oblique dorsomedial to plantarlateral axis
Deformity:
Dorsiflexed Varus 2nd toe

- Medial collateral ligament, dorsal capsule and plantar capsule released
- Guidewire placed in proximal phalanx from dorsomedial to plantarlateral
Deformity:
Dorsiflexed Varus 2nd toe

- Second guidewire placed in metatarsal head, extending from dorsomedial corner of the articular surface to the plantarlateral metatarsal neck
Surgical Technique

- Tendon diameter is measured
- Drill first with 2.0mm drill bit and then 3.0mm drill bit if needed or augmenting with fibertape
 - Drill phalanx and metatarsal
- Transfer tendon through bone tunnel with use of tendon passer
Surgical Technique

- Tendon diameter is measured
- Drill first with 2.0mm drill bit and then 3.0mm drill bit if needed or augmenting with fibertape
- Drill phalanx and metatarsal
- Transfer tendon through bone tunnel with use of tendon passer
- Pass tendon through phalanx base and enter tunnel on opposite side of the phalanx from the insufficient ligament
- Tendon exits phalanx plantarly and routed from plantar to dorsal through metatarsal bone tunnel
Surgical Technique

- Whipstitch technique allows toe to be tensioned quite easily
- Verify with intraoperative fluoroscopy
- Insert 3.0mm biotenodesis screw proximally
 - May add additional screw distally if using fibertape
Reassess Deformity

- Reassess hammered digit and need for additional surgery
 - Flexible deformity may no longer need addressed after transfer
- MTP may appear subluxed plantarly due to dorsal capsulotomy but resolves with repair and WB.
- Reapproximate EDL and close in anatomic layers
Post Operative Findings

- 120 day followup
- WB without difficulty in normal shoe gear
MTP Angle
Post Operative Findings

<table>
<thead>
<tr>
<th>Preop AP°</th>
<th>Post op AP</th>
<th>% change</th>
<th>Pre op LAT</th>
<th>Post op LAT</th>
<th>% change</th>
<th>Follow Up (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18°</td>
<td>9°</td>
<td>50%</td>
<td>30°</td>
<td>27°</td>
<td>10%</td>
<td>80</td>
</tr>
<tr>
<td>13°</td>
<td>11°</td>
<td>15%</td>
<td>39°</td>
<td>20°</td>
<td>49%</td>
<td>94</td>
</tr>
<tr>
<td>28°</td>
<td>17°</td>
<td>39%</td>
<td>57°</td>
<td>34°</td>
<td>40%</td>
<td>189</td>
</tr>
<tr>
<td>26°</td>
<td>27°</td>
<td>-4%</td>
<td>50°</td>
<td>39°</td>
<td>22%</td>
<td>106</td>
</tr>
<tr>
<td>30°</td>
<td>31°</td>
<td>-3%</td>
<td>40°</td>
<td>41°</td>
<td>-3%</td>
<td>147</td>
</tr>
<tr>
<td>10°</td>
<td>8°</td>
<td>20%</td>
<td>37°</td>
<td>26°</td>
<td>30%</td>
<td>105</td>
</tr>
</tbody>
</table>
Post Operative Follow Up

- Alignment corrected in sagittal and transverse planes
- 2nd digit parallel to 3rd toe
- Purchased WB surface
 - Without PIPJ contracture or MPJ elevation, subluxation or dislocation
- 2 patients
 - Mild varus (medial drift) without hallux abutment
 - Severe deformity preoperatively
 - No pain
- Overall 100% satisfaction
Discussion

- Imbalance between extrinsic and intrinsic forces lead to lesser toe deformities
- MTP stabilized by medial and collateral ligaments, plantar plate, capsule and tendon forces
- Unopposed forces
 - Improper shoe gear, trauma, genetics, inflammatory disorder, neuromuscular disease
- Cadaveric study
 - Consistent transverse tears of plantar plate proximal to capsular insertion on proximal phalanx
 - Collateral ligament tears, complete plantar plate disruption noted in severe deformities

Extrinsic: EDL/FDL \rightarrow extend MTP/flex PIP

Intrinsic: EDB/FDB/lumbricals/interossei \rightarrow flex MTP/extend PIP
Their Technique

- Ellis et al.
 - Static technique

- Haddad et al.
 - FDL compared to EDB transfer
 - EDB transfer = less pain and stiffness
 - Higher rate of recurrence with increased severity of deformity

- Myers and Schon
 - Mini biotenodesis screw without phalangeal tunnel
 - EDB slip with Weil osteotomy

- Lui et al.
 - Secured distal stump of EDB to EDL
Our Technique

- Modified cannulated technique with biotenodesis screw for internal fixation
- To prevent frontal plane deformity seen with previous EDB transfers
- Allows for frontal plane control based upon the angle of orientation of the osseous tunnel
Results

- 2nd MTP transverse plane deformity improved by an average of 20% (AP view)
- 2nd MTP sagittal plane deformity improved by an average of 25% (LAT view)
Limitations

- Small patient population
 - New study being done with 20 patients with reproducible and improved results
To be continued….

- Applicable in lesser deformities
 - Also used in 3rd and 4th MTPJ pathology

- Multiplanar deformities are difficult to treat
 - Reproducible technique to help manage a challenging problem
References

- Unrelated procedures
 - Tarsometatarsal arthrodesis
 - Modified McBride bunionectomy
 - Akin ostetotomy
 - Proximal interphalangeal joint arthrodesis of the 3rd digit
 - 1st metatarsophalangeal joint arthrodesis
 - Neurolysis of the 3rd digital nerve
 - Partial ostectomy of distal phalanx hallux
<table>
<thead>
<tr>
<th>Their Technique</th>
<th>Our Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ellis et al.</td>
<td>Modified cannulated technique with biotenodesis screw for internal fixation</td>
</tr>
<tr>
<td>Static technique</td>
<td>To prevent frontal plane deformity seen with previous EDB transfers</td>
</tr>
<tr>
<td>Hadded et al.</td>
<td>Allows for frontal plane control based upon the angle of orientation of the osseous tunnel</td>
</tr>
<tr>
<td>FDL compared to EDB transfer</td>
<td></td>
</tr>
<tr>
<td>EDB transfer = less pain and stiffness</td>
<td></td>
</tr>
<tr>
<td>Higher rate of recurrence with increased severity of deformity</td>
<td></td>
</tr>
<tr>
<td>Myers and Schon</td>
<td></td>
</tr>
<tr>
<td>Mini biotenodesis screw without phalangeal tunnel</td>
<td></td>
</tr>
<tr>
<td>EDB slip with Weil osteotomy</td>
<td></td>
</tr>
<tr>
<td>Lui et al.</td>
<td></td>
</tr>
<tr>
<td>Secured distal stump of EDB to EDL</td>
<td></td>
</tr>
</tbody>
</table>