“Balanced”
Transmetatarsal Amputations

APMA National Conference
Washington D.C
July 13, 2018

N. Jake Summers, DPM, AACFAS
Dartmouth-Hitchcock Foot & Ankle
25 S. River Rd.
Bedford, NH 03110
n.jake.summers@hitchcock.org
Disclosures

- Arthrex - Speaker
- Celularity - Speaker
- Stryker - Consultant
Brief History of TMA

• Bernard and Huete – (1855)
 • Originally described transmetatarsal amputation in a patient with trench foot
 • Originally describes as an amputation at the: anatomic metatarsal necks

• McKittrick et al – (1949)
 • Applied transmetatarsal amputations for gangrene in diabetic foot infections

• Banks et al – (2001)
 • Diabetic patients are 15x more likely to undergo major limb amputation
 • ~50,000 diabetic amputations annually
Transmetatarsal Amputations

- **Indications:**
 - Trauma
 - Congenital deformities
 - Tumors
 - Frostbite
 - Embolic phenomena
 - **Peripheral vascular disease**
 - Acute diabetic foot infections
 - Chronic diabetic foot infections
 - Ulcerations
 - Failed toe or ray amputations

- **Pecoraro et al - 1990**
 - Triad leading to amputations
 - Minor trauma/Pressure
 - Cutaneous ulcerations
 - Poor wound healing (PVD, neuropathy, hyperglycemia, renal disease)

Transmetatarsal Amputations

• “To TMA or not to TMA”
 • Debridement alone?
 • Digital amputations?
 • Ray resection?
 • Transmetatarsal amputation?
 • Proximal amputation?
Balanced Transmetatarsal Amputations

• “To TMA or not to TMA”
Balanced Transmetatarsal Amputations

• “To TMA or not to TMA”
Balanced Transmetatarsal Amputations

• “To TMA or not to TMA”
Transmetatarsal Amputations

• “To TMA or not to TMA”

• Soft tissue assessment
• Vascular status
• Patient goals and expectations
Transmetatarsal Amputations

• “To TMA or not to TMA”

 • Ray resection vs Transmetatarsal amputation
 • >2 rays require resection = TMA?
 • 1st Ray resection = TMA?
 • Lateral ray resection = better tolerated?
 • Peripheral vascular disease = more proximal amputation?
 • Loss of plantar soft tissues = TMA?
The First Step

• Admission of failure
 • Recognition
 • Recognize your limitations
 • You can’t win them all
 • Admit Powerlessness
 • You are powerless over our patients who are unmanageable and noncompliant
 • Acceptance
 • Accept defeat
 • “Acceptance in human psychology is a person’s assent to the reality of the situation, recognizing a process or condition (often an uncomfortable situation) without attempting to change it”
The First Step

- Admission of failure
 - Recognition
 - Recognize your limits
 - You can’t win them all
 - Admit Powerlessness
 - You are powerless over your patients who are unmanageable and noncompliant
- Acceptance
 - Accept defeat
 - “Acceptance in human psychology is a person’s assent to the reality of the situation, recognizing a process or condition (often an uncomfortable situation)”
Modern Paradigm

“Limb Salvage”

- Transmetatarsal amputation is a limb salvage procedure
- Transmetatarsal amputation is not surgical failure
- The TMA is a positive procedure:
 - The 1st step on the road to rehabilitation
 - “Lose the battle, but win the war”

Goal:

- Achieve a stable, painless, plantigrade foot without areas of excess pressure or prominence
Transmetatarsal Amputations

-**Outcomes:**

 - **Anthony et al:**
 - 82% of patients required further surgery due to complication

 - **Pollard et al:**
 - 32% of patients required more proximal amputation

-This highlights the need for a well “BALANCED TMA” and for close attention to factors that contribute to soft tissue breakdown-

Balanced Transmetatarsal Amputation

• Balancing your TMA:

 • Selection of proper level of amputation:
 • More distal amputation can maximize function
 • More proximal amputation is better if it yields a more functional result

 • Soft tissue coverage:
 • More proximal amputation is better if it allows for more complete soft tissue coverage
Balanced Transmetatarsal Amputations

- Balance between the length of preserved bone and the available soft tissue envelope
 - Closed transmetatarsal amputations
 - Immediate primary closure
 - Delayed primary closure
 - Open transmetatarsal amputations
 - Negative pressure therapy (VAC)
 - Secondary intention
 - Skin grafting
 - Biologic synthetics
Balanced Transmetatarsal Amputations

- Planning
Surgical Technique

• Technically Simple?
 • Fishmouth Incision
 • Plantar Flap Incision
 • Rotational Flaps
Surgical Technique

- Incision and Flap Planning is Key

Fig. 6. (A) The Sander’s technique for plantar flap revision with transmetatarsal amputation in the presence of a distal plantar ulcer. (B) The margins of the ulcer site are then approximated with closure as shown.
Surgical Technique

• Technically Simple?

 • Plantar flap vs Fishmouth incision

 • Full thickness flap dorsally

 • Long plantar flap

 • Tendons transected under tension

 • Cascade metatarsals to restore anatomic parabola

 • Each successive metatarsal ~2mm shorter than adjacent

 • 2nd metatarsal vertex

 • Bevel metatarsal 15-20 dorsal distal to plantar proximal

 • 5th metatarsal beveled in 2 planes
Transmetatarsal Amputations

- Complications:
 - Recurrent ulcerations
 - Recalcitrant ulcerations
 - Residual equinus contracture
 - Bony prominence
 - Dorsiflexory imbalance
 - Pressure points
 - Inadequate soft tissue coverage
 - Open TMA
 - Residual ulcerations/wounds
Transmetatarsal Amputations

• Complications:

 • Most common site of re-ulceration in TMA:
 • Styloid process
 • 5th metatarsal head
 • Distal plantar lateral forefoot.

 • Achilles and TA now invert forefoot without opposing EDL.
 • Increased plantarflexion
 • Lateral metatarsals are completely weight bearing from proximal to distal
 • Medial metatarsals are only weight bearing at the metatarsal heads.
 • Leads to medial proximal shaft floating while lateral shafts bear more weight
Transmetatarsal Amputations

• **Outcomes with adjunctive procedures:**
 • McCallum and Tagoe (2012):
 • 12 Transmetatarsal amputations
 • 0% of TMA patients died within 30 days compared to 3.6% of those patients who had a BKA

 • Mayfield et al (2001):
 • 5,180 amputations
 • 30 day Mortality Rates
 • Toe – 1.7%
 • TMA – 2.7%
 • BKA – 7.0%
 • AKA – 11.0%
 • 5 year Mortality Rate
 • Toe – 46.0%
 • TMA – 45.0%
 • BKA – 56.0%
 • AKA – 70.0%

Surgical Technique

• Balanced TMA:

 • Preserve length, but soft tissue coverage and viable margins take precedence
 • Shorter healed stump is better than a longer, incompletely healed one

 • Preserve metatarsal bases
 • TA and Peroneal tendon insertions

 • Preserve your Tibialis Anterior
 • Preserves active dorsiflexion
 • Extensor tendon contribution is reduced
 • Consider lateralizing TA transfer (STAT, Hibbs)

 • Evaluate Equinus contribution
 • TAL
 • Gastroc recession
Surgical Technique

• Balanced TMA:
 • Forefoot Pressures
 • TAL
 • Gastroc recession
 • ABI’s
 • Inexpensive
 • Easy to perform
 • But are not good predictors of healing
 • Calcification can mask disease
 • TCOP and skin perfusion pressure may be better predictors of wound healing after amputations

• Landry et al:
 • 62 TMAs
 • No predictors of wound healing
 • Poor HgbA1c increases risk of more proximal amputation

Landry et al. *Archives of Surgery*. 2011;146(9):1005–1009

Post-operative Management

- Post-op management
 - Appropriate wound healing
 - Footwear modifications
 - Prostheses

- Mueller et al – 1997
 - Total Contact Shoes
 - Rigid Rocker Bottom Shoes

- Foot-ankle orthosis
- Short shoes

- TMA patients were less functional than their age-matched controls, however they were more functional than those with a more proximal level of amputation.

Summary

• Balance is Key
 • TMA is a positive limb salvage procedure, not a surgical failure
 • A balanced “TMA may provide a more functional and reliable weight bearing foot and should be considered at the initial presentation” - Roukis
 • Achieve a stable, plantigrade, painless without areas of excess pressure
 • Surgical planning (soft tissue coverage)
 • Selection of proper level of amputation
 • More distal amputation can maximize function
 • More proximal amputation is better if it yields a more functional result
 • Adjunctive procedures (STAT, Hibbs, TAL, Gastroc recession)
 • Close Post-op management and follow-p
Thank You